

Progressive Education Society's Modern College of Arts, Science & Commerce Ganeshkhind, **Pune – 16**

Odd Semester Examination: October 2024 Faculty: Science and Technology

Program: BSc Gen03 **Semester: V**

Course Type: Core Program (Specific):B.Sc.

Max. Marks: 35 **Class: T.Y.B.Sc (Mathematics)**

Name of the Course: Group Theory Course Code: 24-MT-353 Time: 2Hrs

Paper no.: III

Instructions to the candidate:

1) There are 3 sections in the question paper. Write each section on separate page.

2) All sections are compulsory.

3) Figures to the right indicate full marks.

4) Draw a well labelled diagram wherever necessary.

SECTION: A

Q1) Solve any five of the following.

(10 Marks)

- a) Let * be a binary operation on \mathbb{Z} , defined as a*b = a + b 1. Find the identity element with respect to *.
- b) Find all abelian groups up to isomorphism of order 30.
- c) Define a cyclic group.
- d) Find all orbits of

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 8 & 6 & 7 & 4 & 1 & 5 & 2 \end{pmatrix} \text{ in } S_{8}.$$

- e) Is \mathbb{Z}_4 isomorphic to Klien's 4 group? Justify.
- f) Find the order of $(\overline{8}, \overline{10})$ in $\mathbb{Z}_{12} X \mathbb{Z}_{18}$.
- g) Find the cyclic subgroup $\langle \rho_1 \rangle$ of symmetric group S_3 where $\rho_1 = (1, 2, 3)$.

SECTION: B

Q.2) Solve any three of the following.

(Marks 15)

a) If G is a group and if $a \in G$, then show that $H=\{a^n \mid n \in \mathbb{Z}\}$ forms a subgroup under multiplication.

- b) Compute the factor group $\mathbb{Z}_4 X \mathbb{Z}_{6.} / < (\overline{1}, \overline{1}) >$.
- c) Consider

- i) Compute $\sigma \tau$
- ii) Compute $\sigma\sigma^{-1}$.
- iii) Write σ as product of disjoint cycles.
- iv) Determine whether σ is even or odd?
- d) Find all subgroups of $<\mathbb{Z}_{12}$, $+_{12}>$. Hence draw its subgroup diagram.
- e) Let G be the set of all real numbers except -1. Define * on G by a*b=a+b+ab. Show that <G , * > is a group.

SECTION: C

Q.3) Solve any one of the following.

(Marks 10)

- a) Prove that M is a maximal normal subgroup of group G if and only if G/M is simple.
- b) i) Let \emptyset be a homomorphism of a group G into a group G'. If e is an identity element in G then prove that $\emptyset(e)$ is the identity element in G'. Also prove that if $a \in G$ then $\emptyset(a^{-1}) = \emptyset(a)^{-1}$.
 - ii) Prove that every group of prime order is cyclic.