Progressive Education Society's Modern College of Arts, Science & Commerce Ganeshkhind, **Pune – 16** **Odd Semester Examination: October 2024 Faculty: Science and Technology** Program: BSc Gen03 **Semester: V** **Course Type: Core** Program (Specific):B.Sc. Max. Marks: 35 **Class: T.Y.B.Sc (Mathematics)** Name of the Course: Group Theory Course Code: 24-MT-353 Time: 2Hrs Paper no.: III ### **Instructions to the candidate:** 1) There are 3 sections in the question paper. Write each section on separate page. 2) All sections are compulsory. 3) Figures to the right indicate full marks. 4) Draw a well labelled diagram wherever necessary. ## **SECTION:** A # Q1) Solve any five of the following. (10 Marks) - a) Let * be a binary operation on \mathbb{Z} , defined as a*b = a + b 1. Find the identity element with respect to *. - b) Find all abelian groups up to isomorphism of order 30. - c) Define a cyclic group. - d) Find all orbits of $$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 8 & 6 & 7 & 4 & 1 & 5 & 2 \end{pmatrix} \text{ in } S_{8}.$$ - e) Is \mathbb{Z}_4 isomorphic to Klien's 4 group? Justify. - f) Find the order of $(\overline{8}, \overline{10})$ in $\mathbb{Z}_{12} X \mathbb{Z}_{18}$. - g) Find the cyclic subgroup $\langle \rho_1 \rangle$ of symmetric group S_3 where $\rho_1 = (1, 2, 3)$. #### **SECTION: B** # **Q.2)** Solve any three of the following. (Marks 15) a) If G is a group and if $a \in G$, then show that $H=\{a^n \mid n \in \mathbb{Z}\}$ forms a subgroup under multiplication. - b) Compute the factor group $\mathbb{Z}_4 X \mathbb{Z}_{6.} / < (\overline{1}, \overline{1}) >$. - c) Consider - i) Compute $\sigma \tau$ - ii) Compute $\sigma\sigma^{-1}$. - iii) Write σ as product of disjoint cycles. - iv) Determine whether σ is even or odd? - d) Find all subgroups of $<\mathbb{Z}_{12}$, $+_{12}>$. Hence draw its subgroup diagram. - e) Let G be the set of all real numbers except -1. Define * on G by a*b=a+b+ab. Show that <G , * > is a group. ### **SECTION: C** ## Q.3) Solve any one of the following. (Marks 10) - a) Prove that M is a maximal normal subgroup of group G if and only if G/M is simple. - b) i) Let \emptyset be a homomorphism of a group G into a group G'. If e is an identity element in G then prove that $\emptyset(e)$ is the identity element in G'. Also prove that if $a \in G$ then $\emptyset(a^{-1}) = \emptyset(a)^{-1}$. - ii) Prove that every group of prime order is cyclic.